
A uni�ed approach to di�erence sets with gcd(v; n) > 1James A. Davis, Department of Mathematics and Computer Science,University of Richmond, Virginia 23173, U.S.A.Jonathan Jedwab, Hewlett-Packard Laboratories,Filton Road, Stoke Gi�ord, Bristol BS34 8QZ, U.K.AbstractThe �ve known families of di�erence sets whose parameters (v; k; �; n) satisfy thecondition gcd(v; n) > 1 are the McFarland, Spence, Davis-Jedwab, Hadamard andChen families. We survey recent work which uses recursive techniques to unify thesedi�erence set families, placing particular emphasis on examples. This uni�ed ap-proach has also proved useful for studying semi-regular relative di�erence sets and forconstructing new symmetric designs.1 IntroductionA k-element subset D of a �nite multiplicative group G of order v is called a (v; k; �; n)-di�erence set in G provided that the multiset of \di�erences" fd1d�12 j d1; d2 2 D; d1 6= d2gcontains each nonidentity element of G exactly � times; we write n�k = �. Although theparameter n need not be listed explicitly we have chosen to do so in order to emphasiseits importance in the classi�cation and construction of di�erence sets.Example 1.1 D = fx; x2; x4g is a (7; 3; 1; 2)-di�erence set in Z7 = hx j x7 = 1i.Example 1.2 D = fy; x; xy; xy2; x2y; x3y3g is a (16; 6; 2; 4)-di�erence set in Z24 = hx; y jx4 = y4 = 1i.Di�erence sets arise in a wide variety of theoretical and applied contexts, and forabelian groups correspond to sequences or arrays with favourable periodic autocorrelationproperties [10]. For a recent survey of di�erence sets see the paper by Jungnickel [17] andits updates by Jungnickel and Schmidt [18], [19], or see Chapter VI of Beth, Jungnickeland Lenz [3].The central problem is to determine, for each parameter set (v; k; �; n), which groupsof order v contain a di�erence set with these parameters. By a counting argument theparameters (v; k; �; n) of a di�erence set are related by k(k � 1) = �(v � 1). We canassume that k � v=2 because D is a (v; k; �; n)-di�erence set in G if and only if thecomplement G nD is a (v; v � k; v� 2k+ �; n)-di�erence set in G. The trivial cases k = 0and k = 1 are usually excluded (although trivial examples can be used as the initial case1



of some recursive constructions). Besides these constraints, di�erence sets are classi�edinto families according to further relationships between the parameters. Jungnickel andSchmidt [18] group the known families into three classes according to their methods ofconstruction:1. Singer di�erence sets. This class comprises the classical Singer family (known al-ternatively as the Projective Geometries family) and the Gordon-Mills-Welch family.The di�erence sets in this class occur in cyclic groups, and are obtained from theaction of a cyclic group of linear transformations on the one-dimensional subspacesof a �nite �eld.2. Cyclotomic di�erence sets. This class comprises the Paley family, the families in-volving residues of higher order than quadratic, and the Twin Prime Power family.The di�erence sets in this class occur in elementary abelian groups, or the productof two such groups, and are unions of cosets of multiplicative subgroups of a �nite�eld.3. Di�erence sets with gcd(v; n) > 1. This class comprises the remaining �ve knownfamilies of di�erence sets, namely McFarland, Spence, Davis-Jedwab, Hadamard andChen. The di�erence sets in this class \seem to prefer to live in groups with lowexponent and high rank" [19].This third class, satisfying gcd(v; n) > 1, has attracted a great deal of research interestand is the only one we consider here. We shall be concerned with constructive rather thannonexistence results. This survey draws heavily on the contents of references [8] and [10].The Hadamard family of di�erence sets is given by(v; k; �; n) = (4N2; N(2N � 1); N(N � 1); N2)for integer N � 1 (see Davis and Jedwab [9] for a survey and Jungnickel and Schmidt[18], [19] for updates). The Hadamard family derives its name from the fact that Dis a Hadamard di�erence set if and only if the (+1;�1) incidence matrix of the designcorresponding to D is a regular Hadamard matrix [17], [25].The McFarland family is given by(v; k; �; n) = �qd+1�qd+1 � 1q � 1 + 1� ; qd�qd+1 � 1q � 1 � ; qd�qd � 1q � 1 � ; q2d�for q a prime power and integer d � 0 (see Ma and Schmidt [21] for a summary). TheHadamard and McFarland families intersect in 2-groups: the Hadamard family with N =2d corresponds to the McFarland family with q = 2.The Spence family is given by(v; k; �; n) = �3d+1�3d+1 � 12 � ; 3d�3d+1 + 12 � ; 3d�3d + 12 � ; 32d�for integer d � 0. 2



The Davis-Jedwab family, introduced in [10] and named in [3], is given by(v; k; �; n) = �22d+4�22d+2 � 13 � ; 22d+1�22d+3 + 13 � ; 22d+1�22d+1 + 13 � ; 24d+2�for integer d � 0.The Chen family, introduced in [5], [6] and named in [3], is given by (v; k; �; n) =�4q2d+2�q2d+2 � 1q2 � 1 � ; q2d+1�2(q2d+2 � 1)q + 1 + 1� ; q2d+1(q � 1)�q2d+1 + 1q + 1 � ; q4d+2�for integer d � 0 and q a prime power. The Chen family with d = 0 corresponds to theHadamard family with N = q; the Chen family with q = 2 corresponds to the Davis-Jedwab family; and the Chen family with q = 3 corresponds to the Spence family withd replaced by 2d + 1. The Davis-Jedwab and Chen families are the �rst new families ofdi�erence sets to be discovered since 1977.For each of these parameter families, the existence question has been solved for in-�nitely many values of the parameters, but not necessarily for all possible groups of agiven order. The following two results, which give complete solutions to the central prob-lem for certain classes of di�erence set, are notable exceptions. (The exponent of a groupG with identity 1G, written exp(G), is the smallest integer � for which g� = 1G for allg 2 G.)Theorem 1.3 A Hadamard di�erence set exists in an abelian group G of order 22d+2 ifand only if exp(G) � 2d+2.Theorem 1.4 A McFarland di�erence set with q = 4 exists in an abelian group G oforder 22d+3(22d+1 +1)=3 if and only if the Sylow 2-subgroup of G has exponent at most 4.The constructive part of Theorem 1.3 is due to Kraemer [20] and the nonexistence part isdue to Turyn [25]. The constructive part of Theorem 1.4 is due to Davis and Jedwab [10]and the nonexistence part is due to Ma and Schmidt [22].The present authors showed in [10] that the Hadamard, McFarland, Spence and Davis-Jedwab parameter families can be uni�ed by means of a recursive construction whichdepends on the existence of certain relative di�erence sets. The required relative di�erencesets are themselves constructed by means of a second recursive construction. The presentauthors showed further in [8] that by extending these two recursive constructions to usedivisible di�erence sets in place of relative di�erence sets, the subsequent constructions [5],[6] of Chen di�erence sets can be brought within the unifying framework. This approachdeals with all abelian groups known to contain di�erence sets from the �ve listed parameterfamilies (although certain initial examples required for the Hadamard family must beconstructed separately).A k-element subset R of a �nite multiplicative group G of order mu containing anormal subgroup U of order u is called a (m;u; k; �) relative di�erence set (RDS) in Grelative to U provided that the multiset fr1r�12 j r1; r2 2 R; r1 6= r2g contains each element3



of GnU exactly � times and contains no element of U . The subgroup U is sometimes calledthe forbidden subgroup. (We have avoided the conventional notation N for the normalsubgroup and n for its order so as to avoid confusion with the di�erence set parameter n.)Example 1.5 R = f1; y; x; x3yg is a (4; 2; 4; 2) RDS in Z4 � Z2 = hx; y j x4 = y2 = 1irelative to hx2i �= Z2.A di�erence set can be considered as a RDS with u = 1. A (m;u; k; �) RDS in G,relative to some normal subgroup U , is equivalent to a square divisible (m;u; k; �)-designwhose automorphism group G acts regularly on points and blocks [16] (see Pott [24] for asurvey of RDSs and [10], [12] for new constructions). The central problem is to determine,for each parameter set (m;u; k; �), the groups G of order mu and the normal subgroupsU of order u for which G contains a RDS relative to U with these parameters.By a counting argument the parameters (m;u; k; �) of a RDS are related by k(k �1) = u�(m � 1). If k = u� then the RDS is called semi-regular and the parameters are(u�; u; u�; �). Relative di�erence sets having semi-regular parameters are of particularinterest, especially those occurring in p-groups (in which case the parameters have theform (pw; pr; pw; pw�r) for p prime). Likewise, divisible di�erence sets having semi-regularparameters have attracted special attention (see Pott [23] for a de�nition and discussion ofdivisible di�erence sets). And in fact both the relative di�erence sets used in the recursiveconstructions of [10] and the divisible di�erence sets used in those of [8] have semi-regularparameters.Di�erence sets are usually studied in the context of the group ring Z[G] of the groupG over the ring of integers Z. The de�nition of a (v; k; �; n)-di�erence set D in G isequivalent to the equation DD(�1) = n1G+�G in Z[G], where by an abuse of notation wehave identi�ed the sets D;D(�1); G with the respective group ring elements D =Pd2D d,D(�1) =Pd2D d�1, G =Pg2G g, and 1G is the identity of G. Similarly the de�nition of a(m;u; k; �) RDS R inG relative to U is equivalent to the equation RR(�1) = k1G+�(G�U)in Z[G]. We shall follow the practice (standard in the di�erence set literature) of abusingnotation by identifying sets with group ring elements, as in the examples above.An alternative viewpoint for considering di�erence sets and RDSs, predominant inengineering papers, is via the autocorrelation properties of binary arrays [15]. The (1; 0)binary array A corresponding to a subset D of a group G is (ag j g 2 G) de�ned byag = 1 if g 2 D and ag = 0 if g 62 D. Then DD(�1) = Pg2GRA(g)g in Z[G], whereRA(g) = Ph2G ahagh. When G is abelian, RA(g) is the periodic autocorrelation of thebinary array A at displacement g, and both A and (RA(g) j g 2 G) can be represented asmatrices. The (+1;�1) binary array B = (bg j g 2 G) corresponding to D is given by thelinear transformation bg = 1� 2ag.For example, using +1 for the symbol + and �1 for �, we can represent the (+1;�1)binary array B corresponding to the subset D of Example 1.2 by the matrix2664 + � + +� � � ++ � + ++ + + � 37754



and its periodic autocorrelation function (RB(g) j g 2 G) by the matrix2664 16 0 0 00 0 0 00 0 0 00 0 0 0 3775 :Similarly the (+1;�1) binary array B corresponding to the subset R in Example 1.5 is2664 � �� ++ ++ � 3775and its periodic autocorrelation function is2664 8 00 0�8 00 0 3775 :In the remainder of this paper, all groups mentioned should be understood to beabelian.We shall require the following de�nitions and results. A character of a group G isa homomorphism from G to the multiplicative group of complex roots of unity. Underpointwise multiplication the set G� of characters of G forms a group isomorphic to G. Theidentity of this group is the principal character that maps every element of G to 1. Thecharacter sum of a character � over the group ring element C corresponding to a subsetof G is �(C) = Pc2C �(c). It is well-known (see [23], for example) that the charactersum �(C) is 0 for all non-principal characters � of G if and only if C is a multiple of G(regarded as a group ring element). If a character � is non-principal on G and principal ona subgroup U then � induces a non-principal character  onG=U de�ned by  (gU) = �(g).The use of character sums to study di�erence sets was introduced by Turyn in hisseminal paper [25] and subsequently extended to relative di�erence sets:Lemma 1.6(i) The k-element subset D of a group G of order v is a (v; k; �; n)-di�erence set in G ifand only if j�(D)j = pn for every non-principal character � of G.(ii) The k-element subset R of a group G of order mu containing a subgroup U of orderu is a (m;u; k; �) RDS in G relative to U if and only if for every non-principalcharacter � of G:j�(R)j = � pk if � is non-principal on U ;pk � u� if � is principal on U .5



Lemma 1.6 indicates a general strategy for constructing di�erence sets and relativedi�erence sets, namely to choose a group subset for which all non-principal character sumshave the correct modulus. In the case of a relative di�erence set whose parameters aresemi-regular, note that the required value of the character sum �(R), when � is principalon the subgroup U , is zero. In Section 2 we shall show that the determination of charactersums can be greatly facilitated by selecting the group subset to be the union of cosets of\building blocks" whose character properties interact in a simple way.By way of introduction to this technique, we use Lemma 1.6 to check the validity ofExamples 1.2 and 1.5 via character sums. We write the subset D of Example 1.2 as thegroup ring element D = y(1 + x2) + x(1 + y2) + xy(1 + x2y2). Let � be a non-principalcharacter of Z24. Now the image space of � is f1; i;�1;�ig and so �(x2) = �1 and�(y2) = �1. If �(x2) = �(y2) = 1 then �(D) = 2�(y + x + xy) = 2�(hxyi) � 2 = �2.Otherwise exactly two of �(1+x2), �(1+ y2) and �(1+x2y2) are zero and so j�(D)j = 2.Therefore by Lemma 1.6 (i), D is a (16; 6; 2; 4)-di�erence set in Z24.Similarly we write the subset R of Example 1.5 as R = 1 + y + x(1 + x2y) and let� be a non-principal character of Z4 � Z2. We have �(x2) = �1 and �(y) = �1. If�(x2) = �(y) = 1 then �(R) = 2�(1 + x) = 2�(hxi) = 0. If �(x2) = 1 and �(y) = �1then �(R) = 0. Otherwise �(x2) = �1 and exactly one of �(1 + y) and �(1� y) is 0, andso j�(R)j = 2. Therefore by Lemma 1.6 (ii), R is a (4; 2; 4; 2) RDS in Z4� Z2 relative toU = hx2i.We shall return to these two examples after introducing some de�nitions which allowtheir essential properties to be described concisely.2 Building sets and extended building setsDe�nition 2.1 A building block in a group G with modulusm is a subset of G such thatall non-principal character sums over the subset have modulus either 0 or m.Some examples of building blocks are a coset of a subgroup of G, a semi-regular RDSin G relative to a subgroup U , and a di�erence set in G.De�nition 2.2 For integers a � 1 and t � 1, a (a;m; t) building set (BS) on a group Grelative to a subgroup U is a collection of t building blocks in G with modulus m, eachcontaining a elements, such that for every non-principal character � of G:(i) exactly one building block has nonzero character sum if � is non-principal on U ;(ii) each building block has zero character sum if � is principal on U .We call the BS covering in the case U = G, when exactly one building block has nonzerocharacter sum for every non-principal character of G. (The use of \covering" refers not tothe intersection or union of the building blocks but to their character properties.)De�nition 2.3 For integers a � 0, m � 1, and h � 1, a (a;m; h;+) extended buildingset (EBS) on a group G with respect to a subgroup U is a collection of h building blocks6



in G with modulus m, of which h�1 contain a elements and one contains a+m elements,such that for every non-principal character � of G:(i) exactly one building block has nonzero character sum if � is principal on U ;(ii) each building block has zero character sum if � is non-principal on U .We de�ne a (a;m; h;�) EBS on G with respect to U in the same way, with a + mreplaced by a �m. We can treat both cases simultaneously by referring to a (a;m; h;�)EBS. Notice that the role of principal and non-principal characters on U in De�nition 2.3 isthe reverse of that in De�nition 2.2! We call the EBS covering in the case U = f1Gg, whenexactly one building block has nonzero character sum for every non-principal characterof G.Example 2.4 Let H0 = 1 + a, H1 = 1 + b and H2 = 1 + ab be subsets of the groupZ22 = ha; b j a2 = b2 = 1i. Then f�;H0;H1;H2g is a (2; 2; 4;�) covering EBS on Z22 andfH1;H2g is a (2; 2; 2) BS on Z22 relative to H0.Example 2.4 is a special case of an important construction which we now describe. LetP be a vector space of dimension 2 over GF(pr), where p is prime. The additive group ofP is isomorphic to Z2rp . There are pr+1 = (p2r� 1)=(pr� 1) subspaces H0;H1; : : : ;Hpr ofP of dimension 1, called hyperplanes, each containing pr elements. The hyperplanes havethe crucial property that any non-principal character of G is principal on exactly one ofthe hyperplanes (see [10], for example):Lemma 2.5 Let P be a vector space of dimension 2 over GF(pr), where p is prime and r �1. Any non-principal character of P is principal on exactly one of the pr + 1 hyperplanesof P .Corollary 2.6 Let p be prime and let r � 1. Then there are subgroups H0;H1; : : : ;Hpr ofZ2rp such that fH1;H2; : : : ;Hprg is a (pr; pr; pr) BS on Z2rp relative to H0 �= Zrp (where H0is contained within exactly r direct factors of Z2rp ), and such that f�;H0;H1;H2; : : : ;Hprgis a (pr; pr; pr + 2;�) covering EBS on Z2rp .Proof: Let H0;H1; : : : ;Hpr be the subgroups of Z2rp of order pr corresponding tohyperplanes of P under an isomorphism from Z2rp to P . Label the subgroups so thatH0 �= Zrp is contained in exactly r direct factors of Z2rp . Then Lemma 2.5 implies theresult. �We next relate the covering EBS and BS of Example 2.4 to the di�erence set of Exam-ple 1.2 and the RDS of Example 1.5 in order to illustrate the motivation for introducingbuilding blocks. The subset D of Example 1.2 can be written as 1:�+ yH0+ xH1+ xyH2by embedding Z22 in Z24 via a 7! x2 and b 7! y2. Each of the four building blocks of the(2; 2; 4;�) covering EBS occurs in a di�erent coset of Z22 in Z24. Likewise the subset Rof Example 1.5 can be written in the form 1:H1 + xH2 by embedding Z22 in Z4 � Z2 via7



a 7! x2 and b 7! y, and each of the two building blocks of the (2; 2; 2) BS occurs in adi�erent coset of Z22 in Z4� Z2. We now show how to formalise this procedure.We begin by showing that a BS on a group G relative to a subgroup U can be used toconstruct a BS on larger groups containing G as a subgroup. In the case when the BS onG has parameters (a;pat; t) this allows the construction a semi-regular RDS as a singlebuilding block on a group containing G.Lemma 2.7 Suppose there exists a (a;m; t) BS on a group G relative to a subgroup Uand let s be an integer dividing t. Then there exists a (as;m; t=s) BS on G0 relative to U ,where G0 is any group containing G as a subgroup of index s.Proof: Let fB1; B2; : : : ; Btg be a (a;m; t) BS on G relative to U . For each j =1; 2; : : : ; t=s de�ne the subset Rj = [si=1g0iBi+(j�1)s of G0, where g01; g02; : : : ; g0s 2 G0 arecoset representatives of G in G0. (Although the building blocks Bi can have non-emptyintersection, by de�nition no set Rj contains repeated elements.) Let � be a non-principalcharacter of G0 and consider the character sum �(Rj) = Psi=1 �(g0i)�(Bi+(j�1)s). Wedistinguish three cases.Case 1: � is principal on G and non-principal on G0 (so s > 1). We have �(Bi+(j�1)s) =jBi+(j�1)sj = a for each ordered pair (i; j) and so �(Rj) = aPsi=1 �(g0i) = 0 for each j.The last equality uses the fact that � induces a non-principal character on G0=G, and theassociated character sum over this group is 0.Case 2: � is principal on U and non-principal on G. By assumption �(Bi+(j�1)s) = 0for each ordered pair (i; j) and so again �(Rj) = 0 for each j.Case 3: � is non-principal on U . By assumption j�(Bi+(j�1)s)j = m for exactly oneordered pair (i; j) (say (I; J)) and j�(Bi+(j�1)s)j = 0 for all other ordered pairs (i; j).Therefore j�(RJ )j = j�(g0I)jj�(BI+(J�1)s)j = m and j�(Rj)j = 0 for each j 6= J .The character sums for the three cases show that fR1; R2; : : : ; Rt=sg is a (as;m; t=s)BS on G0 relative to U . �Theorem 2.8 Suppose there exists a (a;pat; t) BS on a group G relative to a subgroupU of order u, where at > 1. Then there exists a (at; u; at; at=u) semi-regular RDS in G0relative to U , where G0 is any group containing G as a subgroup of index t.Proof: Apply Lemma 2.7 with s = t to obtain a (at;pat; 1) BS on G0 relative to U .For at > 1, it follows from De�nition 2.2 and Lemma 1.6 (ii) that this is equivalent to a(at; u; at; at=u) semi-regular RDS in G0 relative to U . �By following a similar proof to that of Lemma 2.7 and Theorem 2.8 we can show thata covering EBS on a group G can be used to construct a covering EBS on larger groupscontaining G as a subgroup, and that this allows the construction of a di�erence set as asingle building block on a group containing G.Lemma 2.9 Suppose there exists a (a;m; h;�) covering EBS on a group G and let s bean integer dividing h. Then there exists a (as;m; h=s;�) covering EBS on G0, where G0is any group containing G as a subgroup of index s.8



Theorem 2.10 Suppose there exists a (a;m; h;�) covering EBS on a group G. Thenthere exists a (hjGj; ah �m;ah �m �m2;m2)-di�erence set in any group G0 containingG as a subgroup of index h.By applying Theorems 2.8 and 2.10 to the BS and covering EBS of Corollary 2.6 weobtain the following result, of which Examples 1.2 and 1.5 are special cases. For q a primepower, we write EA(q) to denote the elementary abelian group of order q.Example 2.11 Let p be prime and let r � 1. Then there exists a (p2r; pr; p2r; pr) semi-regular RDS in any group of order p3r containing a subgroup G �= Z2rp , relative to somesubgroup U �= Zrp of G, and there exists a McFarland di�erence set with q = pr and d = 1in any group of order q2(q + 2) containing a subgroup isomorphic to EA(q2).Further examples of BSs and covering EBSs are given by:Example 2.12 Let G be any one of the groups Z24 � Z2, Z4 � Z32 and Z52. Then thereexists a (8; 4; 2) BS on G relative to a subgroup U �= Z22 contained within two of the largestdirect factors of G, and there exists a (8; 4; 3;�) covering EBS on G.Proof: For G = Z24 � Z2 = hx; y; z j x4 = y4 = z2 = 1i and U = hx2; y2i �= Z22 weobtain the desired BS from the work of Arasu and Sehgal [2] by de�ning B1 = 1+x+xz+x2z+x2yz+xy+xy3z+ y3 and B2 = 1+x3+x3y2z+x2y2z+ yz+xy3z+xy3+x2y andusing direct computation to verify that fB1; B2g is a (8; 4; 2) BS on G relative to U . ForG = Z4�Z32 or Z52 we use Corollary 2.6 to provide a (4; 4; 4) BS on Z42 relative to U �= Z22and then apply Lemma 2.7 with s = 2 to construct the desired (8; 4; 2) BS on G relativeto U .For all three groups G we de�ne a third building block B3 = U , and then fB1; B2; B3gis a (8; 4; 3;�) covering EBS on G. �By applying Theorems 2.8 and 2.10 to the BSs and covering EBSs of Example 2.12 weobtain further semi-regular RDSs and di�erence sets:Example 2.13 There exists a (16; 4; 16; 4) semi-regular RDS in each of the groups Z8�Z4�Z2, Z34, Z24�Z22, Z8�Z32, Z4�Z2�Z4�Z2, Z4�Z42, Z22�Z4�Z22 and Z62 relativeto a subgroup isomorphic to Z22 contained within the �rst two direct factors of the group.There exists a (96; 20; 4; 16) McFarland di�erence set in any group of order 96 whose Sylow2-subgroup has exponent at most 4.3 Construction TheoremsIn this section we describe two recursive constructions, the �rst for covering EBSs andthe second for BSs. These constructions allow us to systematically generate families ofcovering EBSs and BSs and then, using Theorems 2.8 and 2.10, to deduce the existenceof families of di�erence sets and semi-regular RDSs. We use the following example tointroduce the �rst recursive construction. 9



Example 3.1 There exists a (32; 16; 11;�) covering EBS on any group G of order 128and exponent at most 4.Proof: Let U �= Z22 be a subgroup of G contained within two of the largest directfactors of G (so that G=U is isomorphic to Z4�Z32 or Z52). By Example 2.12 there existsa (8; 4; 3;�) covering EBS on G=U , say fB01; B02; B03g. \Lift" this covering EBS by settingBj = fg 2 G j gU 2 B0jg for j = 1; 2; 3 and let � be a non-principal character of G.Now each Bj is the union of jB0j j distinct cosets of U so if � is non-principal on U then�(Bj) = 0 whereas if � is principal on U then �(Bj) = 4 (B0j), where  is the non-principal character induced by � on G=U . By De�nition 2.3,  (B0j) is nonzero (havingmodulus 4) for exactly one value of j. Furthermore jB1j = jB2j = 32 and jB3j = 16.Therefore by De�nition 2.3, fB1; B2; B3g is a (32; 16; 3;�) EBS on G with respect to U .In addition we shall demonstrate in Example 3.8 that there exists a (32; 16; 8) BS on Grelative to U , say fB4; B5; : : : ; B11g. Therefore by De�nitions 2.2 and 2.3 the mulitsetunion fB1; B2; : : : ; B11g is a (32; 16; 11;�) covering EBS on G: either exactly one of thebuilding blocks B1; B2; B3 has nonzero character sum (with modulus 16) and each of thebuilding blocks B4; B5; : : : ; B11 has zero character sum, or vice-versa. �The covering EBS of Example 3.1 gives rise, under Theorem 2.10, to a (1408; 336; 80; 256)McFarland di�erence set in G � Z11 having q = 4 and d = 2. In contrast the (8; 4; 3;�)covering EBS used as an initial object in the proof of Example 3.1 gives rise, under Theo-rem 2.10, to a (96; 20; 4; 16) McFarland di�erence set in G=U�Z3 having q = 4 and d = 1.This indicates the pattern of a recursive construction for McFarland di�erence sets relyingon a construction method for covering EBSs which we now prove.Lemma 3.2 Suppose there exists a (am;m; h;�) covering EBS on a group G=U , whereU is a subgroup of G of order u. Then there exists a (uam; um; h;�) EBS on G withrespect to U .Proof: Let fB01; B02; : : : ; B0hg be a (am;m; h;�) covering EBS on G=U . For each j letBj = fg 2 G j gU 2 B0jg be the pre-image of B0j under the quotient mapping from G toG=U . Since Bj is the union of jB0j j distinct cosets of U , it follows both that jBj j = ujB0j jand that for every non-principal character � of G:�(Bj) = � 0 if � is non-principal on U ,u (B0j) if � is principal on U ,where  is the non-principal character induced by � on G=U . By the de�nition of cov-ering EBS,  (B0j) is nonzero (having modulus m) for exactly one value of j. ThereforefB1; B2; : : : ; Bhg is a (uam; um; h;�) EBS on G with respect to U . �Theorem 3.3 Let G be a group containing a subgroup U of order u. Suppose there existsa (am;m; h;�) covering EBS on G=U and there exists a (uam; um; t) BS on G relativeto U . Then there exists a (uam; um; h + t;�) covering EBS on G.10



Proof: By Lemma 3.2 the existence of a (am;m; h;�) covering EBS on G=U impliesthe existence of a (uam; um; h;�) EBS, say fB1; B2; : : : ; Bhg, on G with respect to U .So by De�nition 2.3, a non-principal character � of G gives a nonzero character sumon exactly one of the building blocks B1; B2; : : : ; Bh if � is principal on U , and gives azero character sum on all these building blocks otherwise. By assumption there exists a(uam; um; t) BS, say fBh+1; Bh+2; : : : ; Bh+tg, on G relative to U . So by De�nition 2.2, anon-principal character � of G gives a nonzero character sum on exactly one of the buildingblocks Bh+1; Bh+2; : : : ; Bh+t if � is non-principal on U , and gives a zero character sum onall these building blocks otherwise. Combining the character properties, we see that themultiset union of the building blocks fB1; B2; : : : ; Bh+tg is a (uam; um; h+ t;�) coveringEBS on G. �The proof of Theorem 3.3 demonstrates the power of the notion of building sets andextended building sets. The crucial property, that at most one of the building blockshas a nonzero character sum, allows us to combine their favourable character propertiessimply by taking the multiset union of the constituent building blocks. In contrast thebinary array viewpoint would require a much more complicated analysis involving thecross-correlation of pairs of arrays.Example 3.4 There exists a (16; 8; 5;+) covering EBS on each of the groups Z24 � Z22,Z4� Z42 and Z62.Proof: Let G be any one of the listed groups and let U �= Z22 be a subgroup of G such thatG=U �= Z42. Now by Corollary 2.6 with p = 2 and r = 1 there exists a (2; 2; 4;�) coveringEBS on Z22. Therefore by Theorem 2.10, Z42 contains a (16; 6; 2; 4)-di�erence set, whichcan be viewed as a (4; 2; 1;+) covering EBS on Z42. Also Section 4 of [10] demonstratesthat there exists a (16; 8; 4) BS on G relative to U . Combining these under Theorem 3.3we obtain a (16; 8; 5;+) covering EBS on G. �We remark that whereas the covering EBS of Example 3.1 comprises ten blocks ofequal cardinality and an eleventh which is smaller, the covering EBS of Example 3.4comprises four blocks of equal cardinality and a �fth which is larger. Under Theorem 2.10the covering EBS of Example 3.4 gives rise to a (320; 88; 24; 64) Davis-Jedwab di�erenceset in G � Z5 having d = 1. This indicates the pattern of a recursive construction forDavis-Jedwab di�erence sets, since the initial (16; 6; 2; 4)-di�erence set used in the proofof Example 3.4 can be regarded as a Davis-Jedwab di�erence set with d = 0.However both Examples 3.1 and 3.4 rely on the existence of certain BSs. In generalthe recursive construction of covering EBSs using Theorem 3.3, and therefore of di�erencesets using Theorem 2.10, relies on the existence of families of suitable BSs. This motivatesthe second recursive construction of this section, for BSs.The idea of the construction is to exploit the hyperplane structure of Lemma 2.5 toobtain a more general result than Corollary 2.6. Begin with a group G containing asubgroup Q isomorphic to Z2rp and consider those subgroups Hi of G which correspond tohyperplanes when viewed as subgroups of Q. We now show that if there exists a BS on11



G=Hi relative to Q=Hi for i = 1; 2; : : : ; pr then each BS can be \lifted" from the quotientgroup G=Hi to G to collectively form a BS on G relative to H0.Theorem 3.5 Let G be a group containing a subgroup Q �= Z2rp , where p is prime andr � 1 (the case Q = G being allowed). Let H0;H1; : : : ;Hpr be the subgroups of G of orderpr corresponding to hyperplanes when viewed as subgroups of Q. Suppose there existsa (a;m; t) BS on G=Hi relative to Q=Hi for each i = 1; 2; : : : ; pr. Then there exists a(pra; prm; prt) BS on G relative to H0.Proof: For each i � 1, let fB0i1; B0i2; : : : ; B0itg be a (a;m; t) BS on G=Hi relative toQ=Hi. Following the proof of Lemma 3.2, for each i � 1 and for each j let Bij = fg 2 G jgHi 2 B0ijg. Since Bij is the union of jB0ij j = a distinct cosets of Hi, jBij j = pra, and forevery non-principal character � of G and for each i � 1 and for each j:�(Bij) = � 0 if � is non-principal on Hi,pr (B0ij) if � is principal on Hi, (1)where  (B0ij) is the non-principal character induced by � on G=Hi. By the de�nition ofBS, for each i � 1,  (B0ij) is nonzero (having modulus m) for exactly one value of j if  is non-principal on Q=Hi, and is zero for each value of j if  is principal on Q=Hi.We claim that fBij j 1 � i � pr; 1 � j � tg, comprising prt subsets Bij of G, is a(pra; prm; prt) BS on G relative to H0. To establish this, let � be a non-principal characterof G and distinguish three cases.Case 1: � is non-principal on Q and on H0. By Lemma 2.5, � is principal on HI forsome I 6= 0 and non-principal on Hi for each i 6= I. Therefore �(Bij) = 0 for each i 6= Iand �(BIj) = pr (B0Ij), from (1). Since � is non-principal on Q,  is non-principal onQ=HI and so  (B0Ij) is nonzero (having modulus m) for exactly one value of j. Therefore�(Bij) is nonzero (having modulus prm) for exactly one ordered pair (i; j).Case 2: � is non-principal on Q and principal on H0. By Lemma 2.5, � is non-principalon Hi for each i 6= 0. Therefore �(Bij) = 0 for each ordered pair (i; j), from (1).Case 3: � is principal on Q (note this cannot arise if Q = G). In this case � is principalon Hi for each i � 0. Therefore �(Bij) = pr (B0ij) for each i � 1, from (1). Since  isprincipal on Q=Hi,  (B0ij) = 0 for each ordered pair (i; j).The results for the three cases establish the claim. �Given a group G and a subgroup H0 �= Zrp on which we wish to construct a BS usingTheorem 3.5, we are free to choose Q to be any subgroup of G isomorphic to Z2rp containingH0. This choice will determine the subgroups Hi 6= H0 of G corresponding to hyperplanes.By suitable choice of generators of G we can assume that Q is contained in 2r direct factorsof G and that any one particular hyperplane Hi is contained in r of these direct factors.Then the proof of Theorem 3.5 describes a procedure for constructing the BS explicitly.Given a (a;m; t) BS on each of the pr quotient groups G=Hi relative to Q=Hi, we lift eachBS from G=Hi to G by taking Bij = fg 2 G j gHi 2 B0ijg. This produces the prt buildingblocks of a (pra; prm; prt) BS on G relative to H0. We now illustrate this procedure indetail. 12



Example 3.6 There exists a (32; 16; 8) BS on G = Z34�Z2 = hx; y; z; w j x4 = y4 = z4 =w2 = 1i relative to H0 = hx2; y2i �= Z22.Proof:We �rstly choose the subgroupQ �= Z42 of G to be hx2; y2; z2; wi, which containsH0. We next determine the subgroups of G corresponding to hyperplanes, by reference tothe multiplicative structure of GF(4). Since x2+x+1 is an irreducible polynomial of degree2 over GF(2) we can regard GF(4) as having multiplicative generator �, where �2 = �+1.Then the hyperplanes of GF(4)2 are h(1; 0)i, h(0; 1)i, h(1; 1)i, h(�; 1)i and h(�+1; 1)i. De�nean isomorphism from GF(4)2 to Q by (1; 0) 7! x2, (�; 0) 7! y2, (0; 1) 7! z2 and (0; �) 7! w.The subgroups of G corresponding to the hyperplanes are then respectively H0 = hx2; y2i,H1 = hz2; wi, H2 = hx2z2; y2wi, H3 = hy2z2; x2y2wi and H4 = hx2y2z2; x2wi. For eachi 6= 0 we now form the quotient group G=Hi and its associated subgroup Q=Hi. In thiscase we �nd that G=Hi �= Z24�Z2, and Q=Hi �= Z22 is contained within Z24, for each i 6= 0.We therefore require a (8; 4; 2) BS on ha; b; c j a4 = b4 = c2i relative to ha2; b2i. UsingExample 2.12, such a BS is given by the group ring elementsB01(a; b; c) = 1 + a+ ac+ a2c+ a2bc+ ab+ ab3c+ b3;B02(a; b; c) = 1 + a3 + a3b2c+ a2b2c+ bc+ ab3c+ ab3 + a2b:In order to construct the BS on G we write each quotient group G=Hi explicitly in termsof its generators. We �nd G=H1 = hxH1; yH1; zH1i, G=H2 = hxH2; yH2; xzH2i, G=H3 =hxH3; yH3; yzH3i and G=H4 = hxH4; yH4; xyzH4i, the �rst two generators having order4 and the third generator having order 2 in each case. We also �nd Q=Hi �= hx2Hi; y2Hiifor each i 6= 0. Therefore a (8; 4; 2) BS in G=Hi relative to Q=Hi is given by the buildingblocks B0i1 and B0i2 where for j = 1; 2 we have B01j = B0j(x; y; z)H1, B02j = B0j(x; y; xz)H2,B03j = B0j(x; y; yz)H3 and B04j = B0j(x; y; xyz)H4. For example, B021 = H2 + xH2 +x2zH2 + x3zH2 + x3yzH2 + xyH2 + x2y3zH2 + y3H2. Each of the expressions B0ij is agroup ring element in Z[G=Hi] comprising 8 elements of the quotient group G=Hi. We�nally obtain Bij = fg 2 G j gHi 2 B0ijg by regarding the formal expression for B0ijas a group ring element in Z[G] comprising 32 elements of G. The 8 building blocksfBij j 1 � i � 4; 1 � j � 2g then form a (32; 16; 8) BS on G relative to H0. �For the group G of Example 3.6 we see that all the quotient groups G=Hi havingi 6= 0 are isomorphic but in general this need not be the case. For example, let r = 3and consider the group G = Z2 � Z4 � Z8 � Z8 � Z4 � Z4 = hx; y; z; u; v; w j x2 = y4 =z8 = u8 = v4 = w4 = 1i. Follow the procedure given in the proof of Example 3.6 tolabel the hyperplanes of GF(8)2 and de�ne an isomorphism from GF(8)2 to Q = hx =y2 = z4 = u4 = v2 = w2 = 1i �= Z62, taking the irreducible polynomial of degree 3 overGF(2) to be x3 + x + 1. Then the subgroups of G corresponding to the hyperplanesh(1; 1)i, h(�2; 1)i and h(�4; 1)i are H2 = hxu4; y2v2; z4w2i, H4 = hz4u4; xy2v2; y2z4w2i andH6 = hy2z4u4; xy2z4v2; xz4w2i respectively. The factor groups G=H2 and G=H6 are notisomorphic to G=H4: we have G=H2 = hH2; yH2; zH2; uH2; yvH2; wz2H2i �= (Z1�)Z4 �Z8�Z8�Z2�Z2, G=H4 = hH4; yH4; zH4; zuH4; vH4; yz2wH4i �= (Z1�)Z4�Z8�Z4�Z4�Z2 and G=H6 = hH6; yz2u2H6; zH6; uH6; wyvH6; wH6i �= (Z1�)Z2 � Z8 � Z8 � Z2 � Z4.Furthermore, although each of the factor groups Q=H2, Q=H4 and Q=H6 is isomorphic13



to Z32, the direct factors of G=Hi which contain Q=Hi are di�erent in each case: we haveQ=H2 = hy2H2; z4H2; u4H2i (contained within the second, third and fourth direct factorsof G=H2), Q=H4 = hy2H4; z4H4; v2H4i (contained within the second, third and �fth directfactors of G=H4) and Q=H6 = hz4H6; u4H6; w2H6i (contained within the third, fourth andsixth direct factors of G=H6).The above discussion illustrates that to apply Theorem 3.5 e�ectively we need infor-mation about the form of G=Hi and Q=Hi. In fact we can show [10] that by appropriatechoice of generators, exactly r direct factors of G retain the same exponent in G=Hi (thesebeing the direct factors that contain Q=Hi) and r are reduced by a factor of p:Lemma 3.7 Let G be the group Q2ru=1Zp1+�u containing a subgroup Q �= Z2rp , where p isprime and �u � 0. Let H0;H1; : : : ;Hpr be the subgroups of G of order pr correspondingto hyperplanes when viewed as subgroups of Q. Then for each Hi there exists a r-elementsubset S of f1; 2; : : : ; 2rg such that G=Hi �=Qu62S Zp1+�u�Qu2S Zp�u. Moreover, for eachHi a suitable choice of generators of G ensures that Q=Hi �= Zrp is contained in the �rst rdirect factors of G=Hi as speci�ed.Lemma 3.7 allows us readily to generalise Example 3.6:Example 3.8 There exists a (32; 16; 8) BS on any group G of order 128 and exponentat most 4 relative to a subgroup U �= Z22 contained within two of the largest direct factorsof G.Proof: Let Q �= Z42 be a subgroup of G containing H0 = U . For each subgroupHi 6= H0 of G of order 4, corresponding to a hyperplane when viewed as a subgroup of Q,Lemma 3.7 shows that G=Hi has order 32 and exponent at most 4 and that Q=Hi �= Z22 iscontained in two of the largest direct factors of G=Hi. By Example 2.12 there is a (8; 4; 2)BS on G=Hi relative to Q=Hi and so by Theorem 3.5 we obtain the desired BS on G. �Just as Theorem 3.3 can be applied recursively to construct covering EBSs, subjectto the existence of families of suitable BSs, so Theorem 3.5 can be applied recursively toconstruct BSs | but without relying on the existence of other objects! (When Theorem 3.5is applied in this way it is important to keep track of the position of the subgroup H0in relation to the group G at each stage.) The pattern of a recursive construction fora family of such BSs is indicated by comparing the BSs of Example 2.12 with thoseof Example 3.8. This family will be described explicitly in Section 4 and used in theconstruction of McFarland di�erence sets (see also the proof of Example 3.1 and subsequentremarks).Figure 1 is a schematic representation of the recursive construction of BSs and coveringEBSs described in this section. On the right side of the �gure Theorem 3.5 is used to obtaina BS on a group G by lifting a BS on each of the factor groups G=Hi for i 6= 0. On the leftside of the �gure Theorem 3.3 is used to obtain a covering EBS on a group G by lifting acovering EBS on G=H0 and combining with a BS on G relative to H0 (see Theorems 3.3and 4.6 of [10] for details). 14
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4 The McFarland, Spence, Davis-Jedwab, Hadamard andChen familiesIn this section we summarise the recursive construction of di�erence sets in the McFarland,Spence, Davis-Jedwab and Hadamard families from covering EBSs using Theorems 3.3and 3.5 (see [10] for details). We also summarise the recursive construction of di�erencesets in the Chen families, for which a modi�cation to Theorem 3.5 is required (see [8] fordetails). These results deal with all (abelian) groups known to contain such di�erence sets,although certain initial examples required for the Hadamard family must be constructedseparately.Recursive application of Theorem 3.5 yields the following families of BSs. All of theinitial BSs needed to begin the recursions are given by (or can be derived from) Corol-lary 2.6, Example 2.12 and the example of a (4; 4; 4; 1) RDS in Z24 relative to Z22 given byJungnickel [16].Theorem 4.1 For each d � 1, the following exist:(i) A (pdr; pdr; pdr) BS on Z(d+1)rp relative to Zrp, where p is prime and r � 1.(ii) A (22d+1; 22d; 22d�1) BS on any group Gd of order 22d+3 and exponent at most 4relative to a subgroup Ud �= Z22 contained within two of the largest direct factorsof Gd.(iii) A (22d+2; 22d+1; 22d) BS on any group Gd of order 22d+4 and exponent at most 4relative to a subgroup Ud �= Z22 contained within two of the largest direct factorsof Gd, except possibly G1 = Z34.Using Theorem 3.3 and the BSs of Theorem 4.1 we can recursively construct thefollowing families of covering EBSs. The only non-trivial initial covering EBSs required,for case (iv), can be derived from the covering EBS of Corollary 2.6 (which itself is givenby putting d = 1 in case (i) below).Theorem 4.2 For each d � 0, the following exist:(i) A (pdr; pdr; p(d+1)r�1pr�1 + 1;�) covering EBS on Z(d+1)rp , where p is prime and r � 1.(ii) A (22d+1; 22d; 22d+1+13 ;�) covering EBS on any group of order 22d+3 and exponent atmost 4.(iii) A (3d; 3d; 3d+1�12 ;+) covering EBS on Zd+13 .(iv) A (22d+2; 22d+1; 22d+2�13 ;+) covering EBS on any group of order 22d+4 and exponentat most 4, except possibly Z34 in the case d = 1.By applying Theorem 2.10 to the covering EBSs of Theorem 4.2 we deduce the existenceof the following families of di�erence sets. 16



Corollary 4.3 For each d � 0, the following exist:(i) A McFarland di�erence set with q = pr in any group of order qd+1( qd+1�1q�1 + 1) con-taining a subgroup isomorphic to EA(qd+1), where p is prime and r � 1.(ii) A McFarland di�erence set with q = 4 in any group of order 22d+3(22d+1+13 ) containinga subgroup of order 22d+3 and exponent at most 4.(iii) A Spence di�erence set in any group of order 3d+1(3d+1�12 ) containing a subgroupisomorphic to Zd+13 .(iv) A Davis-Jedwab di�erence set in any group of order 22d+4(22d+2�13 ) containing asubgroup of order 22d+4 and exponent at most 4, except possibly when the subgroupis Z34 in the case d = 1.This completes the summary of known results for the McFarland, Spence and Davis-Jedwab parameter families.We consider next the Hadamard parameter family. The key initial object requiredfor the recursive construction of Hadamard di�erence sets is a (m(m�12 );m; 4;+) coveringEBS on a group of odd order m2. The following basic examples are currently known.Theorem 4.4 There exists a (m(m�12 );m; 4;+) covering EBS on the following groups Mof order m2:(i) M is the trivial group.(ii) M = Z23�, where � � 1.(iii) M = Z4p, where p is an odd prime.While case (i) of Theorem 4.4 is trivial, the other two cases are de�nitely not! Case(ii) is due to Arasu, Davis, Jedwab and Sehgal [1]. Case (iii) is due to Chen [5], who builton a succession of papers by Xia [28], Xiang and Chen [29], van Eupen and Tonchev [13],and Wilson and Xiang [27].The following result, based on a construction of Turyn [26], allows us to compose the(m(m�12 );m; 4;+) covering EBSs of Theorem 4.4 to produce examples in more generalgroups.Theorem 4.5 Suppose there exists a (mi(mi�12 );mi; 4;+) covering EBS on a group Miof odd order m2i for i = 1; 2. Then there exists a (m1m2(m1m2�12 );m1m2; 4;+) coveringEBS on M1 �M2.We can use the covering EBSs given by composition, as described above, to deriveappropriate initial BSs and covering EBSs for constructing the Hadamard family. Re-cursive application of Theorems 3.3 and 3.5, followed by Theorem 2.10, leads to the fol-lowing conclusion. We write QiZai to denote the direct product of �nitely many groupsZa1;Za2; : : : ;Zar for some r � 0, with the convention that in the case r = 0 this representsthe trivial group. 17



Corollary 4.6 Let M be the group QiZ23�i �Qj Z4pj, where each �i � 1 and where eachpj is an odd prime, and let jM j = m2. Then the following exist:(i) A (m(m�12 );m; 4;+) covering EBS on M .(ii) A (22d�1m2; 2dm; 2) BS on Gd �M relative to any subgroup of order 2, where d � 1and Gd is any group of order 22d and exponent at most 2d.(iii) A (22d�1m2; 2dm; 4;�) covering EBS on Gd �M , where d � 1 and Gd is any groupof order 22d and exponent at most 2d.(iv) A Hadamard di�erence set with N = 2dm in Gd �M , where d � 0 and Gd is anygroup of order 22d+2 and exponent at most 2d+2.This completes the summary of known results for the Hadamard parameter family.We turn now to the Chen parameter family. In the recursive construction of theMcFarland, Spence, Davis-Jedwab and Hadamard families summarised above, the BSsused in Theorems 3.3 and 3.5 all have parameters of the form (a;pat; t) (and so giverise under Theorem 2.8 to semi-regular relative di�erence sets). In contrast the recursiveconstruction of the Chen family uses (a;m; t) BSs for which m 6= pat (which give rise tosemi-regular divisible di�erence sets with �1 6= 0 [8]).The key step, both in Chen's original constructions [5], [6] and in our recursive for-mulation (given in full in [8]), occurs in the derivation of suitable initial BSs from therestriction of Corollary 4.6 to elementary abelian groups. In the case leading to Chen dif-ference sets with odd q, this key step involves replacing one of four building blocks by itscomplement. In the case leading to Chen di�erence sets with even q, the key step involvesmodifying Theorem 3.5 to allow lifting with respect to \contracted" hyperplanes. Oncethese initial BSs have been derived we can recursively construct the following families ofBSs using Theorem 3.5 (without modi�cation).Theorem 4.7(i) For each d � 0 there exists a (q2d+1( q�12 ); q2d+1; 4q2d) BS on EA(q2d+2) relative toEA(q2), where q = 3r or q = p2r for p an odd prime, and r � 1.(ii) For each d � 1 there exists a (q2d+1(q� 1); q2d+1; 2q2d) BS on EA(2q2d+2) relative toEA(q2), where q = 2r and r � 1.We next use Theorem 3.3 and the BSs of Theorem 4.7 to construct recursively anin�nite family of covering EBSs. The initial covering EBSs are again provided by therestriction of Corollary 4.6 to elementary abelian groups.Theorem 4.8 For each d � 0 the following exist:(i) A (q2d+1( q�12 ); q2d+1; 4( q2d+2�1q2�1 );+) covering EBS on EA(q2d+2), where q = 3r orq = p2r for p an odd prime, and r � 1.18



(ii) A (q2d+1(q� 1); q2d+1; 2( q2d+2�1q2�1 );+) covering EBS on EA(2q2d+2), where q = 2r andr � 1.By applying Theorem 2.10 to the covering EBSs of Theorem 4.8 we obtain the followingfamilies of Chen di�erence sets.Corollary 4.9 For each d � 0 the following exist:(i) A Chen di�erence set with q = 3r or q = p2r in any group of order 4q2d+2( q2d+2�1q2�1 )containing a subgroup isomorphic to EA(q2d+2), where p is an odd prime and r � 1.(ii) A Chen di�erence set with q = 2r in any group of order 4q2d+2( q2d+2�1q2�1 ) containing asubgroup isomorphic to EA(2q2d+2), where r � 1.5 Recursive construction of building setsWhereas in Section 4 we used Theorem 3.5 only as required to provide suitable families ofBSs for the recursive construction of di�erence sets, in this section we shall demonstratethat Theorem 3.5 is a powerful construction method in its own right for generating familiesof BSs. These BSs in turn yield families of semi-regular relative di�erence sets (underTheorem 2.8, when the parameters have the form (a;pat; t)) or families of semi-regulardivisible di�erence sets [8].For an extended example we consider the (pr; pr; pr) BS on Z2rp relative to Zrp of Corol-lary 2.6. We noted in Theorem 4.1 (i) that recursive application of Theorem 3.5 to thisBS yields:Theorem 5.1 Let p be prime and r � 1. For each d � 1 there exists a (pdr; pdr; pdr) BSon Z(d+1)rp relative to Zrp.We now show that we can also derive from this initial (pr; pr; pr) BS a family of BSswhose building blocks again have modulus pdr but which are de�ned on groups of lowerrank than Z(d+1)rp .Example 5.2 Let p be prime and r � 1. There exists a (p3r; p2r; pr) BS on any groupG2 of order p4r and exponent at most p2 relative to any subgroup U2 �= Zrp, where G2=U2contains a subgroup of index pr and exponent p.Proof: By Corollary 2.6 there exists a (pr; pr; pr) BS on Z2rp relative to Zrp. Put s = prin Lemma 2.7 to obtain a (p2r; pr; 1) BS on any group G of order p3r, relative to anysubgroup U �= Zrp, subject to the condition: G contains a subgroup S (containing U) ofindex pr and exponent p.We now wish to apply Theorem 3.5 to obtain a (p3r; p2r; pr) BS on G2 relative toU2. We can do this provided there exists a subgroup Q2 �= Z2rp of G2 whose hyperplanesH0;H1; : : : ;Hrp , when viewed as subgroups of G2, satisfy the conditions: H0 = U2 and,19



for each i 6= 0, G2=Hi contains a subgroup S2=Hi (containing Q2=Hi) of index pr andexponent p. The case d = 2 of the group theoretic result stated as Lemma 5.5 shows thatthis condition on each of the factor groups G2=Hi is implied by the single condition thatG2=U2 contains a subgroup of index pr and exponent p, completing the proof. �For example, if G2 = Z2r�2p � Zr+1p2 (where r > 1) and we write the subgroup U2 �= Zrpas being contained within r direct factors of G2 then all choices of U2 are allowed, exceptpossibly U2 being contained within the subgroup Z2r�2p . This demonstrates that theposition of the subgroup U2 within G2 is important. In particular, in the case r = 2,Example 5.2 deals with all groupsG2 of order p8 and exponent at most p2 and all subgroupsU2 �= Z2p, except possibly G2 �= U2 � Z3p2.We now repeat the above procedure.Example 5.3 Let p be prime and r � 1. There exists a (p5r; p3r; pr) BS on any groupG3 of order p6r and exponent at most p3 relative to any subgroup U3 �= Zrp, where G3=U3contains a subgroup of index pr and exponent at most p2 and contains a subgroup of indexp3r and exponent p.Proof: Put s = pr in Lemma 2.7 to obtain from Example 5.2 a (p4r; p2r; 1) BS onany group G of order p5r, relative to any subgroup U �= Zrp, subject to the condition: Gcontains a subgroup S (containing U) of index pr and exponent at most p2 such that S=Ucontains a subgroup of index pr and exponent p.We next wish to apply Theorem 3.5 to obtain a (p5r; p3r; pr) BS on G3 relative to U3.This can be done provided there exists a subgroup Q3 �= Z2rp of G3 whose hyperplanesH0;H1; : : : ;Hrp , when viewed as subgroups of G3, satisfy the conditions: H0 = U3 and,for each i 6= 0, G3=Hi contains a subgroup S3=Hi (containing Q3=Hi) of index pr andexponent at most p2 such that (S3=Hi)=(Q3=Hi) contains a subgroup of index pr andexponent p. The case d = 3 of Lemma 5.5 shows that this condition on each of the G3=Hiis implied by the condition that G3=U3 contains a subgroup of index pr and exponent atmost p2 and contains a subgroup of index p3r and exponent p, completing the proof. �By repeating this procedure we obtain a BS on a group Gd of order p2dr and exponentat most pd relative to a subgroup Ud �= Zrp, with the following accumulation of conditionson the factor group Gd=Ud (see [10] for a formal proof):Theorem 5.4 Let p be prime and r � 1. For each d � 1 there exists a (p(2d�1)r ; pdr; pr)BS on any group Gd of order p2dr and exponent at most pd relative to any subgroupUd �= Zrp, where, for d > 1, Gd=Ud contains a subgroup of index p(2d�2j�1)r and exponentat most pj for j = 1; 2; : : : ; d� 1.The group theoretic lemma which allows conditions on the factor groups Gd=Hi to bereplaced by conditions on Gd=Ud (see Theorem 7.5 of [10] for a proof) is:Lemma 5.5 Let p be prime and d > 1, and let G be a group of order p2dr and exponentat most pd containing a subgroup U �= Zrp. Suppose that G=U contains a subgroup of index20



p(2d�2j�1)r and exponent at most pj for j = 1; 2; : : : ; d � 1. Then G contains a subgroupQ �= Z2rp whose hyperplanes H0;H1; : : : ;Hpr , when viewed as subgroups of G, satisfy thefollowing:(i) H0 = U(ii) For each i 6= 0, G=Hi contains a subgroup S=Hi (containing Q=Hi) of index prand exponent at most pd�1 such that (S=Hi)=(Q=Hi) contains a subgroup of indexp(2d�2j�3)r and exponent at most pj for j = 1; 2; : : : ; d� 2.Beginning with an initial example such as the (pr; pr; pr) BS considered above, repeatedapplication of Theorem 3.5 and Lemma 5.5 gives a result of the form of Theorem 5.4,involving multiple conditions on the factor group Gd=Ud. For a particular example someof the conditions may be redundant. In the case of Theorem 5.4 it is straightforward tosee by inspection that the conditions for j = 1; 2; : : : ; d�2 are all implied by the conditionfor j = d� 1. Therefore Theorem 5.4 can be rewritten as:Corollary 5.6 Let p be prime and r � 1. For each d � 1 there exists a (p(2d�1)r ; pdr; pr)BS on any group Gd of order p2dr and exponent at most pd relative to any subgroupUd �= Zrp, where, for d > 1, Gd=Ud contains a subgroup of index pr and exponent at mostpd�1.For example, take Gd = Z2rpd in Corollary 5.6 (so that the condition on Gd=Ud is alwayssatis�ed) and let P (r) be the number of partitions of the positive integer r. Then Theo-rem 2.8 shows that for each d � 1 and for any prime p there exists a (p2dr; pr; p2dr; p(2d�1)r)semi-regular RDS in P (r) nonisomorphic groups of rank 2r relative to any subgroup Zrp.Two such groups are Zrpd+1 � Zrpd and Zpd+r � Z2r�1pd . This shows that the group rank ofthe underlying BS, and also of the resulting RDSs, can remain �xed at 2r as the grouporder grows without bound.Compare Theorems 5.1 and 5.4 as two possible outcomes of applying Theorem 3.5to the (pr; pr; pr) BS of Corollary 2.6. To derive Theorem 5.1 we constrained the groupexponent at each stage to be p whereas for Theorem 5.4 we allowed the group exponent togrow by a factor of p at each stage. One consequence is that after applying Theorem 2.8 tothese BSs, the minimum group rank for the semi-regular RDSs arising from Theorem 5.4can be as small as 2r but for those arising from Theorem 5.1 must be at least (d+1)r. Onthe other hand the group exponent for the RDSs arising from Theorem 5.1 can be as muchas pdr+1 but for those arising from Theorem 5.4 must be at most pd+r. This illustratesa trade-o� between a small rank and a high maximum exponent for the resulting RDSs.It is possible to derive other BSs representing intermediate points between the extremesof Theorems 5.1 and 5.4 by constraining the exponent of the group on which the BS isde�ned to be at most pc for a �xed value of c in the range 1 � c � d (see Corollary 7.7 of[10]).In general, given a single initial example of a BS (which could comprise just one buildingblock) we can obtain an in�nite family of BSs using Theorem 3.5. In some cases we canalso produce further families of BSs by \contracting" the initial BS prior to recursive21



application of Theorem 3.5 (as described in [10] and [12]). Apart from the (pr; pr; pr) BSof Corollary 2.6 discussed as an extended example in this section, we have the followinginitial examples of BSs:Example 5.7 The following BSs exist:(i) A (pr; pr=2; 1) BS on Z2rp relative to Zrp, where p is an odd prime and r � 1.(ii) A (2r; 2r=2; 1) BS on Zr4 relative to Zr2, where r � 1.(iii) A (22r�1; 2(2r�1)=2; 1) BS on Zr4 � G relative to the subgroup Zr2 of Zr4, where r � 1is odd and G is any group of order 2r�1 and exponent at most 4.(iv) A (8; 4; 2) BS on Z24�Z2 relative to the subgroup Z22 of Z24.(v) A (8; 4; 2) BS on Z2�Z24� Z2 relative to the subgroup Z32 of Z2� Z24.(vi) A (2p(2p � 1)2; 2p=2(2p � 1); 1) BS on Zp4 � Z22p�1 relative to the subgroup Zp2 of Zp4,where 2p � 1 is prime.(vii) A (22r3; 2rp3; 1) BS on Z22r � Z23 relative to the subgroup Z3 of Z23, where r � 1.Cases (i) and (ii) are equivalent to semi-regular RDSs constructed by Jungnickel [16],case (iii) is equivalent to semi-regular RDSs constructed by Chen, Ray-Chaudhuri andXiang [7], and cases (vi) and (vii) are equivalent to semi-regular RDSs constructed byDavis, Jedwab and Mowbray [12]. Case (iv) is contained in Example 2.12 and case (v) isdue to Davis and Jedwab [11]. Further initial examples of BSs on groups whose order isnot a prime power are described in [12].The families of BSs arising from these examples under recursive application of Theo-rem 3.5, and the semi-regular RDSs then arising under Theorem 2.8, are described in [10]for cases (i), (ii), (iii) and (iv), in [11] for case (v), and in [12] for cases (vi) and (vii).Certain extensions to Lemmas 3.7 and 5.5 are required to handle some of these examples.In particular, cases (ii), (iii), (iv), (v) and (vi) involve a BS on a group G relative to asubgroup U �= Zrp such that U is contained in a subgroup of G not isomorphic to Zrp, andthis must be taken into consideration when Theorem 3.5 is applied recursively. We notethat for cases (vi) and (vii) we can obtain additional families of semi-regular RDSs bymeans of a product construction [12].Finally we remark that when the subgroup U has order 2 the pattern of existence forsemi-regular RDSs is very rich. We have already seen examples in Corollary 4.6 (ii) of BSswhich give rise to such RDSs under Theorem 2.8 and [10] gives recursive constructions forfurther families originating with the covering EBSs of Corollary 4.6 (i).6 Open questions1. The construction of Hadamard di�erence sets described in Section 4 relies on the ex-istence of a (m(m�12 );m; 4;+) covering EBS on a group of odd order m2. Can we22



�nd any examples apart from those of Theorem 4.4 and their compositions underTheorem 4.5?2. The construction of Hadamard di�erence sets described in Section 4 for which n = N2is not a prime power depends on Theorem 4.5. Is there an analogous compositiontheorem for McFarland di�erence sets or for Chen di�erence sets?3. The construction of Chen di�erence sets with q = 2r summarised in Corollary 4.9 (ii),when applied to the case q = 2, does not deal with all the groups covered by Corol-lary 4.3 (iv) even though the parameters then coincide. Does this point to theconstruction of Chen di�erence sets in new groups with q = 2r > 2?4. The construction of McFarland di�erence sets described in Section 4 includes resultsspeci�c to the case q = 4 (which are summarised in Corollary 4.3 (ii) and contributethe existence part of Theorem 1.4). Can we �nd comparable results for McFarlanddi�erence sets with q = 2r > 4?5. Chen [4] has given necessary conditions on the parameters of certain covering EBSs.Can we �nd di�erence sets in new parameter families by constructing covering EBSssatisfying these conditions?6. Ionin [14] has given a recursive construction for symmetric designs relying on buildingsets and covering EBSs and as a consequence has produced seven new in�nite familiesof symmetric designs. Can we apply this method to �nd further new symmetricdesigns?References[1] K.T. Arasu, J.A. Davis, J. Jedwab, and S.K. Sehgal. New constructions of Menondi�erence sets. J. Combin. Theory (A), 64:329{336, 1993.[2] K.T. Arasu and S.K. Sehgal. Some new di�erence sets. J. Combin. Theory (A),69:170{172, 1995.[3] T. Beth, D. Jungnickel, and H. Lenz. Design Theory. Cambridge University Press,Cambridge, 2nd edition. To appear.[4] Y.Q. Chen. On a family of covering extended building sets. Designs, Codes andCryptography. To appear.[5] Y.Q. Chen. On the existence of abelian Hadamard di�erence sets and a new familyof di�erence sets. Finite Fields Appl., 3:234{256, 1997.[6] Y.Q. Chen. A construction of di�erence sets. Designs, Codes and Cryptography,13:247{250, 1998. 23
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